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A parabolized set of linear equations is derived, which, in combination with the
proposed solution procedure, allows for the study of both non-modal and modal
disturbance growth in three-dimensional boundary layers. The method is applicable to
disturbance waves whose lines of constant phase are closely aligned with the external
streamline. Moreover, strongly growing disturbances may fall outside the scope of
application. These equations are used in conjunction with a variational approach
to compute optimal disturbances in Falkner–Skan–Cooke boundary layers subject to
adverse and favourable pressure gradients. The disturbances associated with maximum
energy growth initially take the form of streamwise vortices which are tilted against
the mean crossflow shear. While travelling downstream these vortical structures rise
into an upright position and evolve into bent streaks. The physical mechanism
responsible for non-modal growth in three-dimensional boundary layers is therefore
identified as a combination of the lift-up effect and the Orr mechanism. Optimal
disturbances smoothly evolve into crossflow modes when entering the supercritical
domain of the flow. Non-modal growth is thus found to initiate modal instabilities
in three-dimensional boundary layers. Optimal growth is first studied for stationary
disturbances. Influences of parameters such as sweep angle, spanwise wavenumber
and position of inception are studied, and the initial optimal amplification of
stationary crossflow modes because of non-modal growth is investigated. Finally,
general disturbances are considered, and envelopes yielding the maximum growth at
each position are computed. In general, substantial growth is already found upstream
of the first neutral point. The computations show that at supercritical conditions,
maximum growth of optimal disturbances in accelerated boundary layers can exceed
the growth predicted for modal instabilities by several orders of magnitude.

1. Introduction
The classical approach to transition prediction is based on exponential amplification

of discrete modes. This so-called modal growth serves as an input for prediction
methods such as the well-known eN -method, which then provide a certain location
for transition from laminar to turbulent flow. Modal growth is often computed locally
under the assumption of a parallel baseflow by solving the Orr–Sommerfeld equation.
More advanced non-local methods were developed for convectively unstable flows
by Herbert and Bertolotti and by Dallmann and Simen (see e.g. Bertolotti, Herbert

† Email address for correspondence: ardeshir.hanifi@foi.se



6 D. Tempelmann, A. Hanifi and D. S. Henningson

& Spalart 1992; Simen 1992), allowing for non-parallel baseflows. Both approaches
are based on parabolizing the linear stability equations and only differ with respect
to the order of which terms are kept. We will commonly refer to these methods
as the classical parabolized stability equations (PSEs). They were found to correctly
reproduce modal growth in two- and three-dimensional boundary layers (see e.g.
Bertolotti et al. 1992; Hanifi et al. 1994; Herbert 1997; Bippes 1999; Saric, Reed &
White 2003).

It is known that the external conditions, i.e. free-stream turbulence and surface
roughness, have a large influence on the disturbance development. Deyhle &
Bippes (1996) performed several experiments on three-dimensional boundary layers
in different wind tunnels. They observed a strong dependence of the disturbance
development on upstream conditions. Bippes (1999) has summarized that the changes
in the disturbance development are quite dramatic. At low free-stream turbulence
levels stationary crossflow modes dominate, whereas at high levels travelling modes
become more energetic. These findings have been confirmed numerically by Schrader,
Brandt & Henningson (2009) and Schrader, Amin & Brandt (2010). Therefore it is
important to include the initiation of modal disturbances within the boundary layer,
the so-called receptivity process, in transition prediction tools. Schrader et al. (2009)
studied the receptivity to both free-stream vorticity and surface roughness in a three-
dimensional swept-plate boundary layer by means of direct numerical simulation
(DNS). They showed that the receptivity coefficient which determines the initial
amplification varies for individual crossflow modes of different wavenumbers and
frequencies. Furthermore the position at which the external disturbance impinges has
an influence on the receptivity. The numerical simulations by Schrader et al. (2010)
have shown that for high levels of free-stream turbulence the initial disturbance
development is characterized by non-modal growth of streak-like disturbances which
then evolve into unsteady crossflow modes. Hence, non-modal growth can be
related to a receptivity mechanism initiating modal instabilities in three-dimensional
boundary layers. Optimal disturbances, being maximally amplified, can therefore
be used to determine the maximum possible initial amplification of crossflow
modes.

1.1. Non-modal growth in two-dimensional boundary layers

Non-modal growth and optimal disturbances have been studied extensively for two-
dimensional boundary layers. Ellingsen & Palm (1975) demonstrated that three-
dimensional streaky disturbances can be amplified linearly in inviscid channel flow.
Hultgren & Gustavsson (1981) found these disturbances to be present in viscous
flow where they eventually decay because of viscous dissipation, leading to the term
‘transient’ growth. A physical explanation for this non-modal growth mechanism
which is commonly known as the ‘lift-up’ effect has been given by Landahl (1980).
Fluid particles keeping their horizontal momentum when being vertically displaced
because of streamwise vortices lead to the formation of streamwise-elongated
structures. These have been found to initiate transition in a number of experiments on
boundary layers subject to free-stream turbulence by e.g. Klebanoff (1971), Kendall
(1985) and Matsubara & Alfredsson (2001). The fact that this transition scenario
does not build on exponentially growing Tollmien–Schlichting (TS) waves led to the
expression ‘bypass’ transition. Transient growth has been the subject of numerous
theoretical and numerical studies in the temporal framework for various parallel
incompressible flows, most notably those by Butler & Farrell (1992), Henningson,
Lundbladh & Johansson (1993), Reddy & Henningson (1993) and Corbett & Bottaro
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(2000). Mathematically, non-modal growth can be explained to be due to the non-
normality of the governing linear operator as outlined in Schmid & Henningson
(2001). However, because boundary layers represent convectively unstable flows it is
physically more relevant to study disturbance growth within the spatial framework.
Andersson, Berggren & Henningson (1999) and Luchini (2000) were the first to
study spatial optimal growth in the non-parallel Blasius boundary layer. Both studies
have shown that in the high-Reynolds-number limit global optimal growth scales
linearly with the Reynolds number and is obtained for stationary disturbances. The
work on non-modal as well as modal growth by Levin & Henningson (2003) has
revealed that these two growth mechanisms compete in two-dimensional boundary
layers and become dominant for different values regarding spanwise wavenumber and
frequency.

Extending the study to two-dimensional compressible boundary layers similar effects
as those outlined above have been found by Hanifi, Schmid & Henningson (1996)
who employed a temporal framework and by Tumin & Reshotko (2003) who used a
spatial approach.

Besides the lift-up effect a second non-modal growth mechanism was shown to
exist by Butler & Farrell (1992). This effect builds on the action of a perturbation
Reynolds stress and is referred to as the Orr mechanism (Orr 1907). Structures
which are tilted against the mean shear gain energy from the meanflow while being
erected. Eventually the energy is returned to the meanflow, and the disturbances decay.
This two-dimensional mechanism has been found to optimally initiate TS waves by
Åkervik et al. (2008). However, in the Blasius boundary layer this non-modal growth
mechanism is much weaker compared with the lift-up effect.

1.2. Non-modal growth in three-dimensional boundary layers

Unlike for two-dimensional boundary layers not much work on non-modal growth has
been done concerning their three-dimensional counterparts. Breuer & Kuraishi (1994)
and Corbett & Bottaro (2001) who studied non-modal growth in three-dimensional
boundary layers employing a temporal framework illuminated the principle difference.
Both non-modal growth and modal growth are observed for similar disturbance
structures, which is contrary to the two-dimensional case. Corbett & Bottaro (2001)
who studied temporal optimal disturbances in three-dimensional boundary layers
found that these initially take the form of vortices which are almost aligned with
the external streamline and evolve into streaks. By comparing the output of non-
modal growth with the most unstable eigenmode Corbett & Bottaro (2001) concluded
that algebraic growth and exponential growth complement each other. They argued
that non-modal growth may provide proper initial conditions for modal growth
and thus constitutes a preferential receptivity path for the selection of exponential
instabilities in three-dimensional boundary layers. A spatial framework is however
needed to take into account non-parallel and non-local effects and to correctly describe
the initiation of modal instabilities because of non-modal growth. Two approaches
to obtain spatial optimal disturbances in three-dimensional boundary layers are
presented in Pralits et al. (2007). The first one, termed single-mode approach, is
based on the existence of one dominating mode. The optimal initial disturbance
and with it a so-called amplification factor which determines the initial amplification
of the dominating mode are then obtained on the basis of the adjoint solution of
the corresponding modal instability. However, the initial non-modal growth of the
optimal disturbance cannot be observed by employing this method, although its final
amplification is captured correctly. Also, in stable regions in which it is difficult to
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identify discrete modes amplification factors may not be yielded. The second approach
(see also Byström 2007) is based upon a parabolized set of equations which are
integrated along a curved line denoting the disturbance path. Hence, the downstream
development of the initial disturbance is obtained for the entire domain. Optimal
growth and the corresponding initial disturbance are then computed via adjoint-based
optimization.

Herein we present a method which is related to the one by Byström (2007).
We derive a parabolized set of equations governing the spatial linear evolution of
an arbitrary initial disturbance in a non-parallel baseflow and present a method
to solve them. Spatial optimal disturbances are then obtained by employing the
method of Lagrange multipliers. In general, optimal growth is studied for boundary
layers over a swept flat plate subject to an adverse as well as a favourable pressure
gradient and for different sweep angles. When presenting results we first concentrate
on optimal stationary disturbances. As outlined above, stationary disturbances are
known to dominate in low-turbulence environments and are thus important in
terms of transition prediction. We investigate the role non-modal growth plays with
respect to the initiation of modal instabilities and discuss its physical mechanisms
in three-dimensional boundary layers. Finally, the restriction of zero frequency is
dropped, and the maximum growth that can be obtained along the chord of the
flat plate is determined. This is achieved by combining the variational approach that
provides the optimal disturbance shape with a Newton line search algorithm to obtain
the corresponding optimal spanwise wavenumber, frequency and initial position at
which the disturbance is introduced. This yields an envelope comprising non-modal
growth.

2. Falkner–Skan–Cooke boundary layer
Throughout the current paper we will describe the evolution of disturbances in a

boundary layer over a swept flat plate which is infinitely elongated in the spanwise
direction and is subject to a chordwise pressure gradient. This type of boundary layer
is often considered as a model for swept-wing boundary layers because it comprises
two important features, namely a pressure gradient and a sweep angle. The resulting
imbalance between pressure and centrifugal forces creates an inflectional profile of
the crossflow velocity component, leading to an inviscid inflectional instability which
provokes the amplification of the so-called crossflow vortices.

The three-dimensional boundary layer equations may be reduced for the infinite
swept plate such that a solution for the chordwise and wall-normal velocities U and W

is obtained from the corresponding two-dimensional equations. The spanwise velocity
component V can then be determined subsequently from the equation, enforcing
conservation of spanwise momentum. A self-similar solution to these equations, which
is commonly known as the Falkner–Skan–Cooke (FSC) boundary layer (Cooke 1950),
is obtained assuming the chordwise and spanwise velocities at the boundary layer
edge, Ue and Ve, to obey

Ue

Q∞
=

(x

l

)m

and
Ve

Q∞
= sinΛ, (2.1)

with m = βH/(2−βH ), where βH is the Hartree parameter which specifies the pressure
gradient. The subscribt e denotes velocities at the boundary layer edge and l represents
some characteristic length. The coordinate system, the velocities and the sweep angle



Spatial optimal growth in three-dimensional boundary layers 9

z

y

ϕ

ys

x

xs

Q∞
U∞

V∞
Λ

Figure 1. Sketch of the streamwise and the crossflow mean velocity components of an FSC
boundary layer. The curved external streamline is indicated by the dashed line. The coordinates
(x, y, z) denote the chordwise, spanwise and wall-normal directions, whereas (xs, ys, z) refer to
the streamwise, crossflow and wall-normal directions. The velocity components (U,V,W ) as
well as (Us, Vs,W ) are defined respectively; Q∞ is the incoming total velocity; Λ represents
the sweep angle and ϕ = ϕ(x) denotes the angle between the streamwise and the chordwise
direction at each chordwise position x.
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Figure 2. FSC solutions for Hartree parameters βH = 0.1 (—) and βH = −0.05 (---) at
x/l = 0.01. The sweep angle is Λ = 45◦. The velocity components denoted by the subscript s
were projected on to the streamwise and the crossflow direction respectively.

Λ are defined in figure 1. Assuming (2.1) would allow the reduction of the boundary
layer equations further to a function of one single similarity variable. However, we
obtain the FSC solutions U , V and W by solving the above-described quasi-three-
dimensional boundary layer equations. The projection on to the streamwise and the
crossflow direction respectively yields

Us = U cos ϕ + V sinϕ, (2.2)

Vs = −U sinϕ + V cos ϕ. (2.3)

Velocities (2.2) and (2.3) as well as the wall-normal velocity component are shown in
figure 2, where z is normalized with the reference length δ =

√
νl/Ql; Ql is the total

mean velocity in the free stream at x = l and ν represents the kinematic viscosity.
For further details, the reader is referred to Schlichting (1979).
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3. Methodology
3.1. Governing equations

Our aim is to describe the spatial evolution of three-dimensional disturbances in
an FSC boundary layer. To be able to obtain spatial optimal disturbances and to
perform parametric studies we would like to arrive at a linear and parabolic set of
equations which can be easily solved numerically, using marching techniques. To
this end one could consider the use of the well-known PSEs (see e.g. Bertolotti et al.
1992; Simen 1992; Herbert 1997) which have been successfully used to compute the
exponential growth of three-dimensional disturbances in an FSC boundary layer by
e.g. Högberg & Henningson (1998). However, the PSEs as they are commonly used
are not capable of predicting non-modal growth of disturbances. This is because
the PSEs are limited to describing the exponential growth of one particular mode,
whereas non-modal growth is known to result from the superposition of exponentially
growing or decaying modes. In the following we will modify the classical PSE method
and make it capable of accounting for both modal and non-modal growth. As for
the classical PSEs we start our derivation with the incompressible Navier–Stokes
equations

∇ · u = 0, (3.1a)

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇P + ν∇2u. (3.1b)

Here, P represents the pressure, ρ the density and u the velocity vector. Decomposing
these quantities into a mean and a perturbation part, subtracting the equations
governing the meanflow and linearizing the resulting equation by neglecting all
products of perturbation quantities yields

∇ · u′ = 0, (3.2a)

∂u′

∂t
+ (u′ · ∇)U + (U · ∇)u′ = − 1

ρ
∇p′ + ν∇2u′, (3.2b)

where mean quantities are represented by upper-case letters and ′ denotes perturbation
quantities. Still following the derivation of the classical PSEs we consider flows which
are homogeneous in the spanwise direction. We thus define the disturbances to take
the form

q ′(x, y, z, t) = q(x, z) exp iΘ(x, y, t), (3.3)

Θ(x, y, t) =

∫ x

x0

α(x ′)dx ′ + βy − ωt, (3.4)

where β represents the spanwise wavenumber, α the chordwise wavenumber and
ω the angular frequency and q = (u, v, w, p)T . Both the shape function q(x, z) in
(3.3) and the chordwise wavenumber in (3.4), which is assumed to be complex in
the classical PSE approach, are functions of x. This ambiguity is usually resolved by
means of an auxiliary condition of the form∫ ∞

0

qH ∂q
∂x

dz = 0, (3.5)

where the superscript H denotes complex conjugate transpose. Condition (3.5)
represents a normalization on the shape function and ensures that the growth and
the chordwise periodic variation of the disturbance are mainly absorbed by the



Spatial optimal growth in three-dimensional boundary layers 11

x z U, V W u, v w α β p t ω

BL scaling l δ Ql Qlδ/ l Ql Qlδ/ l 1/δ 1/δ ρQ2
l δ/ l l/Ql Ql/ l

PSE scaling l δ Ql Qlδ/ l Ql Ql 1/δ 1/δ ρQ2
l δ/Ql Ql/δ

Table 1. Scales assumed for the variables of (3.2) based on the boundary layer as well as the
PSE approximation; BL stands for boundary layer.

exponential part of (3.3). This allows for the assumption of a slow variation of
q(x, z) in the chordwise direction x. However, together with the common approach
of taking a local eigenmode as an initial disturbance it also constitutes a reason
why the PSEs are restricted to the prediction of modal growth. Thus, to be able
to account for non-modal growth we omit the auxiliary condition and resolve the
above-described ambiguity by prescribing the chordwise wavenumber α(x) as a real
function based on lines of constant phase. This approach is described in § 3.2 and
assures that the chordwise periodic variation of the disturbance is taken care of by the
exponential part of (3.3). The growth of q ′ is then completely absorbed by the shape
function.

In the next step we compare the relative order of the different terms of (3.2) in
order to identify those which are negligible and to finally arrive at a parabolized
set of equations. The problem comprises two characteristic length scales, namely a
typical length scale l in the chordwise direction and δ =

√
νl/Ql , where δ � l , in the

wall-normal direction. Hence, to determine the relative order of all terms in (3.2) we
need to scale them appropriately. Andersson et al. (1999) and Luchini (2000) chose
a scaling based on the boundary layer approximation to study non-modal growth
of streaks in a Blasius boundary layer. Levin & Henningson (2003) extended the
study to Falkner–Skan boundary layers and included the terms originating from the
PSE scaling to also account for exponentially growing disturbances. Bagheri & Hanifi
(2007) used the same approach to study the stabilizing effect of streaks on modal
instabilities in a Blasius boundary layer. Their results were in close agreement with
the DNS. The PSE scaling is based on the assumption that the gradients in the wall-
normal and the wall-tangential direction of both the amplitude functions (3.3) and
the phase function (3.4) are of the same relative order as the gradients of the steady
boundary layer flow. Except for the wall-normal meanflow component W which is
assumed to be O(Re−1

δ ) all other meanflow and disturbance quantities U , V , q are
considered as O(1) in (3.2), where Reδ = Qlδ/ν = l/δ (see Simen 1992; Schmid &
Henningson 2001).

We follow the approach by Levin & Henningson (2003), since we need to consider
modal as well as non-modal growth. Therefore the PSE scaling and a scaling based
on the boundary layer approximation (both presented in table 1) are applied to the
disturbance equations (3.2). Only those terms which are of orders higher than Re−1

δ

with respect to both scalings are neglected. This yields a composite approximation
valid for modal and non-modal growth. Both scalings imply a slow variation of the
shape function q(x, z) along the chordwise direction x. However, since the growth
is completely absorbed by the shape function the assumption of slow variation may
not be correct for disturbances exhibiting strong exponential growth. Therefore,
the applicability of this method is limited to flows comprising non-modal and
moderate exponential growth. Collecting terms O(1) and O(Re−1

δ ) and making them
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non-dimensional using some reference quantities uref , lref results in

0 = ux + iαu + iβv + wz, (3.6a)

0 = −iωu + uUx + wUz + Uux + U iαu + V iβu + Wuz

(+px) + iαp +
1

Re

(
α2u + β2u − uzz

)
, (3.6b)

0 = −iωv + uVx + wVz + Uvx + U iαv + V iβv + Wvz

+iβp +
1

Re

(
α2v + β2v − vzz

)
, (3.6c)

0 = −iωw + uWx + wWz + Uwx + U iαw + V iβw + Wwz

+pz +
1

Re

(
α2w + β2w − wzz

)
, (3.6d )

where the subscripts denote partial derivatives and Re = uref lref /ν. However, these
equations are only quasi-parabolic. They exhibit an inherent ellipticity which can
cause numerical instabilities at small Δx (see e.g. Li & Malik 1996, 1997; Andersson,
Henningson & Hanifi 1998). In order to relax this numerical instability we need
to omit the disturbance pressure gradient px in the chordwise momentum equation
(3.6b) as was proposed by Haj-Hariri (1994) for the classical PSEs. It should be noted
that this is not justified by the above analysis, since px is of higher order only with
respect to the boundary layer scaling. However, by comparing with the results from
the DNSs in § 4.1 we find that in FSC boundary layers, px has only negligible effects
on the computed results. The uWx term in the wall-normal momentum equation
(3.6d) is the only term originating from the boundary layer scaling, which is of higher
order with respect to the PSE scaling. It was therefore found to be important for
non-modal growth by Bagheri & Hanifi (2007).

Equations (3.6) pose an initial-value problem. Introducing an initial disturbance
q(x0) a marching procedure may be adopted to yield the downstream development
of the initial disturbance, while we are interested in solutions subject to boundary
conditions

u = v = w = 0 at z = 0, (3.7a)

u → 0, v → 0, w → 0 as z → ∞. (3.7b)

Equations (3.6) can be expressed in compact operator form as

Lq = 0 (3.8)

with L being a linear operator of the form

L = A + B
∂

∂z
+ C

∂2

∂z2
+ D

∂

∂x
. (3.9)

The operators A, B, C and D are defined in Appendix A.

3.2. Determining the chordwise wavenumber α

Our intention is to determine the chordwise wavenumber α such that the periodic
variations of the disturbances are captured by the exponential part of (3.3). The
propagation direction of a wave is denoted by the wave vector k shown in figure 3.
Knowing the direction of k specified by the angle φ and the spanwise wavenumber β

we can determine the chordwise wavenumber α of the disturbance wave according to

α(x) = − tan(φ(x))β. (3.10)
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Figure 3. Illustration showing lines of constant phase and the dependence of the chordwise
wavenumber α on both the angle φ and the spanwise wavenumber β . A coordinate system
(xφ, yφ) is introduced, where xφ denotes a direction tangential to the lines of constant phase.
The corresponding velocity components are (uφ, vφ).

The wave vector and accordingly the propagation direction of a disturbance wave
are generally not known beforehand. Yet we know that the propagation direction
is perpendicular to the line of constant phase whose trajectory (x, y) is related to φ

through

∂y

∂x
= tan(φ(x)) (3.11)

and which, for low-frequency disturbances, is closely aligned to the external streamline
in three-dimensional boundary layers (see Bippes 1999). However, the lines of constant
phase of different flow quantities, e.g. (u, v, w, p), are not identical because each
respective complex shape function will add a different phase shift to the phase
function (3.4). In order to obtain a well-defined chordwise wavenumber α it needs
to be determined on the basis of the line of constant phase of one specific quantity.
Here we choose it to be the disturbance velocity component containing most of
the disturbance energy. This way we ensure that the largest variations because of
oscillatory motion in the chordwise direction are captured by the wavenumber α.
We know from Corbett & Bottaro (2001) that optimal disturbances will evolve from
streamwise-oriented vortical structures into bent streaks and eventually into crossflow
modes in three-dimensional boundary layers. Because streaks as well as low-frequency
crossflow modes are mainly characterized by disturbance motion perpendicular to
their wave vector k it is the velocity component uφ (see figure 3 for definition) that
contains most of the disturbance energy. In the following we will therefore determine
α on the basis of the line of constant phase of uφ . Since uφ and φ are not known
beforehand and directly depend on each other they need to be determined iteratively.

It is only in a region very close to the initial position x0 that uφ does not represent
the most energetic flow quantity. Here the initial vortical structures evolve into streaks,
and thus the lines of constant phase based on any flow quantity are varying rapidly.
We define this initial region to range from x0 to a chordwise position xi at which
the major part of the disturbance energy is concentrated in uφ . Hence, xi denotes
the position at which streak-like disturbances become the dominating structure. The
actual definition of xi can be found in figure 4. We therefore choose φ to be constant
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Figure 4. Contours of disturbance energy of optimal disturbance for βd × δ = 0.55, ω = 0,
βH = 0.1, Λ = 45◦ and x0,d/ l = 0.01. The wall-normal position of maximum energy is
considered at each chordwise position. Lines of constant phase based on maximum disturbance
energy (-·-) as well as the maximum of uφ (---) are shown. Where both are close to each other,
meaning |yE − yuφ

|/| max(yE, yuφ
)| < ε the streak is assumed to be well defined; ε is usually

taken between 0.01 and 0.001. The corresponding position xi is denoted by �. The solid line
(—) represents the line chosen for the computations, which is identical to (---) for x � xi and is
based on a constant φ = φ(xi) upstream of xi . The subscript d denotes dimensional quantities.

100
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100 200

y d
/δ

xd/δ
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Figure 5. Visualization of energy of optimal disturbances for βd ×δ = 0.55, βH = 0.1, Λ = 45◦

and x0,d/ l = 0.01. The solid white line (—) denotes a line of constant phase of uφ as shown
in figure 4, whereas the dashed line (---) represents the external streamline. The subscript d
denotes dimensional quantities.

as φ = φ(xi) for x < xi , whereas φ is based on the line of constant phase of max
z

(uφ)

for x � xi .
The governing equations (3.8) are solved in an iterative manner. During the first

iteration step the external streamline together with uφ = us is used to determine φ

and α and φ = ϕ. On the basis of the lines of constant phase of that first solution uφ ,
α and φ are updated and are then used to solve (3.8) in the next iteration step. The
two latter steps are repeated until the energy growth has converged. For the cases we
consider in the following, three to five iterations have usually been sufficient.

The line of constant phase based on uφ is indeed closely aligned with the external
streamline as can be seen in figure 5. However, basing our computations solely upon
the external streamline leads to small errors locally, which then accumulate while
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integrating downstream. All results presented in the following are therefore computed
employing the iterative procedure outlined above.

It should be noted that the line of constant phase can also be identified as a
disturbance or ray path along which the disturbance travels downstream. In light
of this the method presented here is related to the one by Byström (2007), who
derived a parabolic set of compressible equations using non-orthogonal, curvilinear
coordinates where the curved coordinate was chosen to follow the disturbance path.
Transforming those equations back to Cartesian coordinates, introducing a chordwise
wavenumber according to (3.10) and considering the incompressible limit will result
in (3.6). Another related method is based on complex-ray theory, which was applied
to flow instabilities in boundary layers by Gréa, Luchini & Bottaro (2005). The
disturbances are followed along their paths or rays by solving for the characteristics
of the eikonal equation. The latter takes the form of the local dispersion relation
of the Orr–Sommerfeld system. A review of complex-ray theory has been given by
Chapman et al. (1999).

3.3. Optimal disturbances

We define optimal disturbances as those disturbances, q = (u, v, w, p)T , which will
experience maximum energy amplification at a specific chordwise position x1 for a
given set of parameters Re, β , ω, x0. Because (3.8) poses an initial-value problem we
are searching for the corresponding initial optimal disturbance q0 = q(x0) which is
introduced at the initial chordwise position x0.

3.3.1. Inner products

At this point it is useful to define those inner products which will be employed in
the following. In order to measure the energy of a disturbance q we define an energy
norm

||q||E = (q,Mq) (3.12)

which is based on the inner product

(Ψ , Φ) =

∫ ∞

0

Ψ H Φ dz (3.13)

and M = diag(1, 1, 1, 0) is necessary to assure that the pressure does not contribute;
Ψ and Φ are �n-valued functions. Norm (3.12) represents a local measure of the
disturbance energy at a specific location x. A global measure is given by

〈Ψ , Φ〉 =

∫∫
Ω

Ψ HΦ dx dz, (3.14)

where Ω = [x0, x1]× [0, ∞] refers to the spatial domain. The adjoint of the differential
operator L is then defined in terms of (3.14) as

〈q∗, Lq〉 = 〈L∗q∗, q〉 + boundary terms, (3.15)

where ∗ denotes adjoint quantities and L∗ represents the compact form of

L∗ = A∗ + B∗ ∂

∂z
+ C∗ ∂2

∂z2
+ D∗ ∂

∂x
. (3.16)

The derivation of the adjoint system as well as the specific forms of the adjoint
operators A∗, B∗, C∗ and D∗ are presented in Appendix B.
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3.3.2. Lagrange multipliers

The method of Lagrange multipliers will be used to set up the optimality system
in the following. Our objective is to maximize the energy amplification at a specific
chordwise position x1. A suitable objective function thus takes the form

J (q) =
||q1||E
||q0||E

. (3.17)

The subscripts 0 and 1 denote functions evaluated at the initial position x0 and the
position of maximum amplification x1 respectively. Now we can define a Lagrange
functional

L(q, q∗) = J (q) − 〈q∗, Lq〉 , (3.18)

where we have introduced a Lagrange multiplier or adjoint variable q∗ =
(p∗, u∗, v∗, w∗)T enforcing the state variable to always satisfy the direct equations
(3.8). In order to maximize the objective function (3.17) we need to find the stationary
points of the Lagrange functional (3.18). These we get by finding the roots of the first
variation of (3.18),

δL = 〈∇q∗ L, δq∗〉 + 〈∇qL, δq〉 = 0, (3.19)

where ∇q denotes a gradient with respect to q. For (3.19) to be fulfilled both inner
products have to render zero independently. Considering the first inner product in
(3.19) this implies solving the direct equations (3.8),

〈∇q∗ L, δq∗〉 = 0 ⇒ Lq = 0. (3.20)

The first variation of (3.18) with respect to the state variable q is most easily obtained
by employing identity (3.15). Rendering the second inner product in (3.19) zero then
implies

0 = 〈∇qL, δq〉 ⇔ 0 = − 〈L∗q∗, δq〉

+

(
DH q∗

0 − 2
||q1||E
||q0||2E

Mq0, δq0

)
−

(
DH q∗

1 − 2

||q0||E
Mq1, δq1

)
, (3.21)

if the boundary conditions for the adjoint variables are chosen such that the boundary
terms of (3.15) vanish at z = 0 and z → ∞. This is the case for

u∗ = v∗ = w∗ = 0 at z = 0, (3.22a)

u∗ → 0, v∗ → 0, w∗ → 0 as z → ∞. (3.22b)

In order for expression (3.21) to be true we require all inner products on the right-
hand side to be zero independently for arbitrary δq, δq0, δq1. Considering the first
one retrieves the adjoint equations

〈L∗q∗, δq〉 = 0 ⇒ L∗q∗ = 0. (3.23)

Optimality conditions are then provided by considering the second and the third
inner product in (3.21). These can be interpreted as the first variations with respect
to the initial disturbance and the disturbance at x1 respectively. The corresponding
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gradients of the Lagrange functional with respect to q0 and q1 take the form

∇q0
L = DH q∗

0 − 2
||q1||E
||q0||2E

Mq0, (3.24)

∇q1
L = −DH q∗

1 +
2

||q0||E
Mq1, (3.25)

where the second term on the right-hand sides of both (3.24) and (3.25) arises from
the objective function. The first term is a contribution of the boundary terms of
(3.15), which after imposing boundary conditions (3.22) become [(DH q∗, q)]x1

x0
(see

Appendix B).
At the stationary points of L both gradients (3.24) and (3.25) are zero by definition.

However, looking more closely at (3.24) and specifically at its first component,

∇u0
L = −2

||q1||E
||q0||2E

u0 + U0u
∗
0 + p∗

0, (3.26)

reveals that a zero gradient requires an initial disturbance component u0 which is
non-zero at the wall. This is because the adjoint equations (3.23) do not comprise a
boundary condition for p∗, meaning that p∗

0 is non-zero at the wall. Therefore, and
because p∗ proved to have a very small effect on the overall sensitivity with respect
to q0 (see § 4.3), we neglect it to assure that our optimal initial disturbance satisfies
the boundary conditions. The optimality conditions thus take the form

u0 =
||q0||2E
2||q1||E

U0u
∗
0, (3.27a)

v0 =
||q0||2E
2||q1||E

U0v
∗
0, (3.27b)

w0 =
||q0||2E
2||q1||E

U0w
∗
0 (3.27c)

at the initial chordwise position x0 and

U1u
∗
1 + p∗

1 =
2

||q0||u1, (3.28a)

U1v
∗
1 =

2

||q0||v1, (3.28b)

U1w
∗
1 =

2

||q0||w1 (3.28c)

at the final chordwise position x1. Note that we do not obtain an optimality condition
for p0 because the weight matrix M and the operator DH are singular, as their last rows
consist of zeros. However, because we neglect the chordwise pressure gradient we do
not need to prescribe the pressure at x0. By combining the continuity equation (3.6a)
and the chordwise momentum equation (3.6b) p can be retrieved at each position
according to

iαp = iωu − Uxu − Uzw + U iβv + Uwz − V iβu

−Wuz − 1

Re
(α2u + β2u − uzz). (3.29)

In the two-dimensional case, where α = 0, the pressure term iαp becomes zero. The
disturbance velocities are then directly related through (3.29). Therefore Andersson
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et al. (1999) constrained the initial disturbance to satisfy (3.29) which leads to
solving a least squares problem. However, in the three-dimensional case this becomes
unnecessary, as the pressure term is non-zero. Hence, relation (3.29) is always fulfilled,
and there is no need for a least squares solution for the initial disturbance.

The singularity of M and DH also renders (3.28) overdetermined, leaving us to
choose initial values for u∗

1 and p∗
1 arbitrarily as long as (3.28a) is satisfied. We

simply set u∗
1 to zero in the following. Any other choice would yield the same result

though.
In order to obtain the optimal initial disturbance we need to solve the

optimality system (3.20), (3.23), (3.27) and (3.28) which implies the following iterative
procedure:

(i) Choose an arbitrary initial disturbance (u0, v0, w0)
T satisfying (3.7).

(ii) Solve the direct equations (3.20) marching from x0 to x1.
(iii) Obtain initial conditions for the adjoint equations according to (3.28) at x1.
(iv) Solve the adjoint equations (3.23) by marching upstream from x1 to x0.
(v) Compute new candidate optimal initial disturbance according to (3.27) at x0.

Steps 2–5 are repeated until the growth is converged. Note that this approach does
not guarantee a global maximum. It could just as well converge to a local extremum.
However, starting from two different initial guesses this problem can be diminished.

3.4. Numerical approach

The numerical scheme to solve (3.8) is chosen similar to the one by Andersson et al.
(1999). A second-order backward difference scheme is accomplished to discretize
the direct equations in the chordwise direction, whereas the wall-normal direction is
discretized employing a spectral collocation scheme based on Chebyshev polynomials.
More details on the latter can be found in Hanifi et al. (1996). The same scheme is used
to solve the adjoint equations (3.23) yielding the so-called discretized adjoint equations.

It should be noted that compared with the classical PSEs the approach outlined in
§ 3.2 used here to solve (3.8) requires a higher resolution in the chordwise direction
to yield a converged solution. To predict the modal amplification of crossflow modes
a resolution roughly twice as high is required compared with the classical PSEs,
which in turn results in about twice as much computation time. This is because the
disturbance growth is completely captured by the amplitude functions q. In order
to yield the same accuracy and thus the same truncation error as for the classical
PSEs, either the step size needs to be reduced, or the order of the scheme needs
to be increased. For this reason, the classical PSE method is chosen in conjunction
with the auxiliary function (3.5) to compute the evolution of modal disturbances in
the following. Hence, if not stated explicitly, results on modal disturbances which
are presented in § 4 were obtained by employing the linear NOLOT code (see Hanifi
et al. 1994) which represents an implementation of the classical PSE method.

4. Results
Solving the governing equations (3.8) by employing the approach described in § 3.2

we are able to consider the general case of a non-parallel three-dimensional baseflow
and to describe the spatial evolution of three-dimensional disturbances. We can
therefore compute spatial optimal disturbances and give a measure for the potential
initial amplification of crossflow modes because of non-modal growth.
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The disturbance energy growth in a three-dimensional boundary layer constitutes
a function

G =
E1

E0

= G(x0, x1, β, ω, Re, q0). (4.1)

The disturbance energy is denoted by E = ‖q‖E . Obtaining the maximum growth
for a given Reynolds number at a specific position x1 thus implies finding the three
optimal parameters x0, β and ω in addition to computing the shape function of
the optimal initial disturbance q0. If we want to know the maximum growth that is
attainable along the chord of the flat plate the aforementioned optimal parameters
and the optimal shape function need to be determined for several positions x1. This
poses an expensive task in optimization which we are going to treat by combining
the variational approach described in § 3.3, which provides the optimal shape of the
initial disturbance q0 with a Newton algorithm to find the optimal parameters x0,
β and ω. However, before presenting results of such a ‘global’ optimization we will
concentrate on the study of optimal growth of stationary disturbances. This is helpful
in order to analyse the physical characteristics of optimal disturbances and to study
the influence of individual parameters on optimal growth.

After validating our approach we study disturbance growth in FSC baseflows with
a Reynolds number Rel = Q∞l/ν = 106. We consider three different sweep angles,
namely Λ = 25◦, Λ = 35◦ and Λ = 45◦. The Hartree parameter is chosen to be either
βH = 0.1, yielding an accelerated boundary layer, or βH = −0.05, which results in a
decelerated boundary layer. Disturbance growth will in general be presented in form
of N-factors,

N = 0.5 log G, (4.2)

or in form of the growth rate σ = ∂N/∂x. If not specified explicitly all results
presented throughout this section are scaled using the reference length δ =

√
(lν/Ql)

and the reference velocity Ql , except for the chordwise coordinate x which is scaled
with l.

4.1. Verification

In order to verify that the assumptions made in § 3.1 (e.g. neglecting the chordwise
disturbance pressure gradient px , capturing the disturbance growth in the shape
functions) are appropriate a comparison with the DNS is presented in this section.
The downstream evolution of a travelling and a stationary crossflow mode in an
FSC boundary layer is computed by means of the here-developed modified PSEs and
compared with the DNS results by Schrader et al. (2009) as well as the corresponding
classical PSE solutions in figure 6. To conform to Schrader et al. (2009), non-
dimensional values in figure 6 are based on the initial chordwise boundary layer
displacement thickness and the initial chordwise free-stream velocity. All solutions
match perfectly. The location of the neutral point as well as the disturbance growth are
predicted similarly by all three approaches. Moreover, the real parts of the chordwise
wavenumbers obtained from both PSE approaches match. Hence, the chordwise
wavenumber which was determined iteratively on the basis of the lines of constant
phase captures the major part of the periodic variation of q as was assumed in § 3.1.
It should be noted that in order to obtain the good comparison with the DNS results
also the classical PSE computations were performed without the px term. This was
necessary in order to decrease the critical step size and to yield a sufficient resolution.

Further, the correct implementation of the adjoint equations (3.23) and the
optimization procedure are verified in that the results reported by Levin &
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Figure 6. Evolution of crossflow modes in an FSC boundary layer studied by Schrader et al.
(2009) with βH = 0.333 and Λ = 45◦ computed by means of the here-developed modified
PSEs (—), classical PSEs (---) and DNS (�). The growth rate σ , the N -factor and the real part
of the chordwise wavenumber (only for the PSE methods) are shown for (a, c) a travelling
crossflow mode with β = −0.14 and ω = −0.01 and (b, d ) a stationary crossflow mode with
β = −0.19.

Henningson (2003) are reproduced for a Blasius boundary layer. The optimal growth
G = 0.0034Rel at x1 = 1 is obtained for x0 = 0.37, β = 0.53 and ω = 0. Considering
a boundary layer with Λ = 45◦ and βH = 0 which could also be seen as a swept
Blasius boundary layer yields the same results and provides another check for our
implementation of the chordwise wavenumber α = − tan(φ)β which was described in
§ 3.2.

4.2. Stationary disturbances

Although stationary disturbances proved to be optimal in two-dimensional boundary
layers we cannot expect them to be optimal in the general three-dimensional case.
However, stationary disturbances can play a major role in the transition process of
three-dimensional boundary layers. This was found by Deyhle & Bippes (1996) who
performed experimental investigations on disturbance growth in an unstable three-
dimensional boundary layer. They found that stationary modes dominate in low-
turbulence environments, whereas travelling modes become dominant in the presence
of high levels of free-stream turbulence. From the point of view of transition it is thus
also worthwhile to concentrate on optimal growth of stationary disturbances. Because
we limit ourselves to the study of boundary layers with Rel = 106 as mentioned above,
the growth function to be investigated becomes G = G(x0, x1, β, q0).
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Figure 7. Neutral curves for stationary crossflow modes resulting from the classical PSE
calculations for different initial positions x0 and from solutions to the Orr–Sommerfeld
equations. The neutral curves denote zero-disturbance energy growth. (a) An FSC boundary
layer with βH = 0.1 and Λ = 45◦. Neutral curves for x0 = 0.07 (—), x0 = 0.1 (---), x0 = 0.12
(-·-), Orr–Sommerfeld solution (···). (b) An FSC boundary layer with βH = −0.05 and Λ = 45◦.
Neutral curves for x0 = 0.13 (—), x0 = 0.15 (---), x0 = 0.18 (-·-), Orr–Sommerfeld solution
(· · ·).

4.2.1. Neutral curves for stationary modes

To be able to determine the extent of non-modal growth of a disturbance we need
to know the location of the first neutral point of the corresponding modal instability.
We get the latter by employing the classical PSE method. However, the neutral
point of a modal instability predicted by PSEs is not well defined, as it depends
on the position at which the initial disturbance is introduced. This is because the
latter is usually chosen as a local solution to the Orr–Sommerfeld equations which
comprise the parallel-flow assumption. Some transient effects which depend on the
initial position and which effect the location of the neutral point will therefore be
apparent initially. Figure 7 shows neutral curves of both the accelerated and the
decelerated FSC boundary layer obtained from linear classical PSE calculations for
three different initial positions. For comparison a neutral curve resulting from a local,
parallel computation is also included. It is obvious that the position and the shape of
the neutral curves vary for different initial positions. However, disregarding the local
curve one can see that those parts of the curves that represent branch 2 fall on top
of each other. The location of branch 1 moves upstream as the initial disturbance is
introduced further upstream. The neutral curve corresponding to the local parallel
computations is very different from those obtained by employing the PSEs. This
indicates that non-local effects are important in this case.

For qualitative comparisons we choose the neutral curve yielding the largest
supercritical domain in the following. The corresponding initial position x0 is located
as far upstream in the damped region as is possible to identify a discrete eigenmode.
If quantitative comparisons are made both the modal and the optimal disturbance
are introduced at the same position. Throughout the current paper we use the terms
subcritical and supercritical to denote stable and unstable conditions with respect to
the modal framework.

4.2.2. Optimal growth

As a first step we study optimal initial disturbances at a fixed initial position x0 and
compute the respective optimal growth that can be achieved at different positions x1
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Figure 8. Contours of N -factors of G̃ for steady disturbances and x0 = 0.01. The dashed
line denotes the optimal spanwise wavenumber β at each position x1 obtained for optimal
disturbances. The shaded region represents the largest supercritical domain of figure 7 and the
solid line denotes the optimal β obtained from the corresponding classical PSE computations.
(a) βH = 0.1, Λ = 45◦, ■ → (β = 0.82, x1 = 0.13), ● → (β = 0.38, x1 = 1). (b) βH = −0.05,
Λ = 45◦, ■ → (β = 0.66, x1 = 0.21), ● → (β = 0.33, x1 = 1).

along the chord for different spanwise wavenumbers. In this case optimal growth is
described by the function

G̃ = max
q0

G(x1, β, q0). (4.3)

Figure 8 shows G̃ for an accelerated as well as a decelerated boundary layer, where
the initial position was chosen as x0 = 0.01 close to the leading edge. An important
observation which can be made is that the disturbance growth is positive over almost
the whole domain. Further, N-factors up to 3.5 in the accelerated boundary layer
and up to 3.8 in the decelerated boundary layer are achieved even in the subcritical
domains of the flow. A second observation can be made by considering the optimal
spanwise wavenumber which yields maximum energy growth at each position x1. If
we compare values of β yielding maximum growth of optimal disturbances with those
yielding largest modal growth obtained from the classical PSE analysis we realize
that these are quite different. For both boundary layers, the former takes relatively
high values initially and decreases with increasing x1. For x1 located well inside the
supercritical domain it decreases almost linearly with increasing x1. The optimal
spanwise wavenumber obtained from the linear classical PSE analysis on the other
hand takes considerably smaller values which after decreasing initially become almost
constant. This indicates that different crossflow modes are not equally susceptive to
initial non-modal growth.

4.2.3. Optimal disturbances and the physical mechanisms of non-modal growth

In order to study the shape of optimal disturbances in the supercritical and
subcritical domains of the flow we choose two positions for either of the two boundary
layers that are considered in figure 8. A square symbol in figure 8 denotes subcritical
parameters, whereas supercritical parameters are denoted by a circle. Comparing
now the shape functions of the supercritical optimal disturbance with those of the
subcritical one for the accelerated boundary layer reveals no principal differences
as can be seen in figure 9. At the initial position the velocity components vφ and
w which are perpendicular to the line of constant phase dominate over uφ . At the
position of maximum amplification we observe a contrary situation in which the
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Figure 9. Shape functions of optimal disturbances for βH = 0.1 and Λ = 45◦, where the
velocities uφ (—), vφ (---) and w (-·-) are projected on to the xφ , yφ and z directions respectively.
The thick lines correspond to the subcritical parameters denoted by the square in figure 8,
and the thin lines correspond to the supercritical parameters denoted by the circle in figure 8.
(a) Optimal initial condition. (b) Optimal disturbance at x1.

velocity component aligned with the line of constant phase becomes the dominating
quantity, indicating a streak structure. The wall-normal position of the maximum
streamwise velocity scales well with the local displacement thickness δ∗. Projecting
the shape functions of the optimal disturbances on to a plane perpendicular to the
lines of constant phase at both the initial and the final position the similarity between
the subcritical and supercritical optimal disturbances becomes even more obvious
(see figure 10). The projection reveals that optimal disturbances take the form of
tilted vortices initially and evolve into bent streaks further downstream. The tilting
directions in the accelerated and decelerated boundary layers are opposed. Projecting
the shape functions on to the crossflow plane, as is done for the subcritical optimal
disturbance in the accelerated boundary layer at three different chordwise positions
in figure 11, reveals that the vortices are tilted against the mean shear of the crossflow
initially. While travelling downstream they are erected within a very short distance.
This process strongly resembles a two-dimensional non-modal growth mechanism
discovered by Butler & Farrell (1992), which is based on the action of a perturbation
Reynolds stress and is commonly referred to as the ‘Orr mechanism’. Åkervik et al.
(2008) found this mechanism to provide the optimal way of initiating TS waves in the
Blasius boundary layer. As opposed to the case of Couette flow considered by Butler
& Farrell (1992), where the optimal disturbances are finally tilted in the direction of
the mean crossflow shear they stay more or less upright in our case.

On the basis of the observations made so far we might thus conclude that the
physical mechanism of non-modal growth in three-dimensional boundary layers is a
combination of the well-known lift-up effect, where momentum is transferred to the
streamwise component because of vortical motion, and the Orr mechanism.

Our observations confirm those of Corbett & Bottaro (2001) who found that
in swept flows the algebraic growth mechanism and the exponential instability are
complementary and excite disturbances of similar structure. The contrary can be
found in two-dimensional boundary layers where these two mechanisms bear no
resemblance. Employing a temporal framework Corbett & Bottaro (2001) found that
the output state of an optimal disturbance for a slightly subcritical Reynolds number
is very similar to the eigenfunction of the most amplified mode at a supercritical
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Figure 10. Optimal disturbances for Λ = 45◦. Each subplot corresponds to one of the four
(β, x1)-parameter pairs chosen in figure 8. Within each subplot, (left) absolute values of
shape functions |uφ |, |vφ | and |w| and (right) projection of optimal disturbances on to a
plane perpendicular to the lines of constant phase. The dominating quantities are denoted by
black, while others are in grey. The contours denote the velocity components uφ . The vectors
represent vφ and w respectively. Also shown are (upper) optimal initial disturbance at x0

and (lower) downstream development of optimal disturbance at x1. (a) βH = 0.1, subcritical
parameters; (b) βH = 0.1, supercritical parameters; (c) βH = −0.05, subcritical parameters;
(d ) βH = −0.05, supercritical parameters.
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Figure 11. Visualization of Orr mechanism in an FSC boundary layer with Λ = 45◦ and
βH = 0.1; (β, x1) correspond to the subcritical parameters chosen in figure 8. Shown on the
right is the vector plot comprising the wall-normal and crossflow components of optimal
disturbance at x0 = 0.01 (upper), x = 0.033 (centre) and x = 0.13 (lower). Shown on the left
are the mean crossflow components at the corresponding x positions.
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Figure 12. (a) The N -factors of optimal growth (—) and a pure crossflow mode (---) for
ω = 0, β = 0.38, x0 = 0.07, x1 = 1, Λ = 45◦ and βH = 0.1. The curve representing the growth
of the crossflow mode was shifted to match the optimal growth at x = 1. (b) The corresponding
optimal initial disturbance (�) and shape functions of the adjoint crossflow mode at x0. The
latter were multiplied with the chordwise velocity component of the meanflow U (x0), yielding
u0 (—), v0 (---) and w0 (-·-).

Reynolds number. On the basis of that observation they argued that algebraically
growing disturbances are naturally fed into crossflow modes as the flow evolves.
Employing our spatial approach we are able to observe this process. Figure 12 shows
N-factors of a crossflow mode and the respective optimal disturbance whose spanwise
wavenumbers correspond to the square in figure 8(a). The initial disturbances for
both computations were introduced at the chordwise position x0 = 0.07. Figure 12(a)
depicts quite well how the optimal disturbance evolves into a discrete crossflow mode
where the curve representing the growth of the crossflow mode is shifted to match
the optimal growth curve in the last point. Some distance behind the neutral point
of the crossflow mode both curves are identical. It thus becomes clear that crossflow
modes adopt the role of optimal disturbances in supercritical regimes of the flow.

For such cases the adjoint optimal disturbance should resemble the adjoint of the
corresponding crossflow mode (see Pralits et al. 2007). This means in turn that the
optimal initial disturbance will be related to the adjoint crossflow mode through
(3.27), yielding

uopt (x0) = cU (x0)u
∗
CF (x0),

vopt (x0) = cU (x0)v
∗
CF (x0),

wopt (x0) = cU (x0)w
∗
CF (x0),

⎫⎬
⎭ (4.4)

where c represents a scaling factor and the subscript CF denotes quantities of
a dominating crossflow mode. Figure 12(b) shows such a comparison between an
optimal initial disturbance which maximizes the energy growth at x = 1 and the
corresponding adjoint crossflow mode at x0 which is modified according to (4.4).
Both sets of shape functions match perfectly. The adjoint crossflow mode is computed
using an adjoint PSE solver based on the NOLOT code mentioned earlier (see Pralits
et al. 2000).

4.2.4. Optimal initial amplification of modal disturbances

The last section exemplified how optimal disturbances develop into crossflow
modes. We now want to determine the equivalent initial energy that the pure discrete
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Figure 13. Optimal initial energy of stationary crossflow modes in an FSC boundary layer
with Λ = 45◦ and βH = 0.1. All disturbances were introduced at x0 = 0.07, and the position
of maximum amplification is x1 = 1.

eigenmode should have such that its energy matches the growth, or in other words
the normalized energy, of the optimal disturbance at x1. This ‘optimal initial energy’
tells us how susceptive the excited crossflow mode is to initial non-modal growth. It
is obtained by introducing both the optimal initial disturbance and the corresponding
local eigenmode at the same position. The growth curve of the pure crossflow mode
is then shifted such that it matches the optimal growth curve in the last point as
presented in figure 12(a). A corresponding amplification coefficient may be defined as

CA =
E0,CF

E0,opt

, (4.5)

where E0,opt denotes the energy of the optimal initial disturbance and E0,CF denotes
the optimal initial energy of the pure excited crossflow mode, which was determined
as described above. It should be noted that the natural logarithm of CA is related to
the amplification factor defined in Pralits et al. (2007).

If we calculate CA for several modes with β = 0.18–0.61 we obtain the curve
presented in figure 13. It becomes clear that CA increases with β for the range of
wavenumbers considered here. This shows that the potential for initial amplification of
different crossflow modes because of non-modal growth is diverse. We have already
found an indication for this by comparing the optimal spanwise wavenumbers of
crossflow modes and optimal disturbances in figure 8.

4.2.5. Dependence of optimal growth on initial position x0

Levin & Henningson (2003) found the optimal initial position in a Blasius boundary
layer to be x0 = 0.37, a considerable distance downstream of the leading edge. So
far we have only considered fixed initial positions x0 at which the disturbances
were introduced into the boundary layer. We now investigate the influence of x0 on
optimal growth in FSC boundary layers. Therefore we fix the position of maximum
amplification to be x1 = 1. Hence, optimal growth is computed according to

G̃ = max
q0

G(x0, β, q0); (4.6)

G̃ is presented in figure 14 for the accelerated as well as the decelerated FSC
boundary layer. It becomes apparent that similar to the two-dimensional case, the
optimal initial position which depends on the spanwise wavenumber is located a
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Figure 14. Contours of optimal growth of stationary disturbances at x1 = 1. The dashed line
denotes the optimal initial position for those optimal disturbances experiencing exponential
growth at x1 = 1. The thick grey line corresponds to the neutral curves of stationary crossflow
modes and represents the most unstable case shown in figure 7(a, b). (a) βH = 0.1, Λ = 45◦.
(b) βH = −0.05, Λ = 45◦.

certain distance downstream of the leading edge. The dashed, almost-vertical lines
in figure 14 denote the optimal initial position for those optimal disturbances that
experience exponential growth at x1 = 1. The position of these lines does not exactly
correspond to the position of branch 1 in either case. However, keeping in mind that
the position of branch 1 depends on the initial position and that it moves upstream if
the disturbances are introduced further upstream one could, at least in the accelerated
case, argue that the optimal initial position is located around the region of neutral
stability.

For disturbances with β > 0.6 in the accelerated and β > 0.55 in the decelerated
boundary layer, the optimal initial position moves close to x1. The reason for this
phenomenon is found in the eventual decay of disturbances. At x1 = 1 these spanwise
wavenumbers denote a subcritical region in terms of exponential growth. Hence,
if the corresponding disturbances are introduced far upstream of the final position
x1 they will experience non-modal growth initially but will eventually decay further
downstream. However, if the disturbances are introduced close enough, non-modal
growth is still present close to or at the position of maximum amplification. Thus,
optimal growth for such subcritical parameters is obtained for initial positions which
are located close to x1.

4.2.6. Dependence of optimal growth on the sweep angle

In this section we study optimal growth of steady disturbances in both accelerated
and decelerated FSC boundary layers with three different sweep angles, namely
Λ = 45◦, Λ = 35◦ and Λ = 25◦. The optimal growth function which is investigated
now becomes

G̃ = max
q0

G(Λ, β, q0). (4.7)

We start by comparing the optimal non-modal growth at a position x1 which denotes
subcritical conditions in all six different boundary layers. Therefore x1 is chosen to
be located upstream of the first neutral point of the accelerated boundary layer with
Λ = 45◦ which represents the most unstable one. Hence, x1 = 0.13 which corresponds
to the square symbol in figure 8(a) is a suitable choice. Figure 15 presents the optimal
non-modal growth obtained for different spanwise wavenumbers for all boundary
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Figure 15. The N -factors of optimal growth at x1 = 0.13 (subcritical) for x0 = 0.01, ω = 0,
βH = 0.1 (thick lines) and βH = −0.05 (thin lines). FSC boundary layers with different sweep
angles Λ = 45◦ (—), Λ = 35◦ (---), Λ = 25◦ (-·-) are considered.

layers. It is noticeable that all three decelerated boundary layers exhibit larger N-
factors of optimal non-modal growth than the accelerated ones. This result is in
accordance with the findings by Corbett & Bottaro (2000) and Levin & Henningson
(2003) for two-dimensional boundary layers and Corbett & Bottaro (2001) for three-
dimensional boundary layers, who observed higher levels of non-modal growth for
adverse pressure gradients. Further we find that the maximum growth achievable at
x1 increases for increasing sweep angles. Hence, the larger the crossflow in a boundary
layer the larger the maximum non-modal growth. Considering the six boundary layers
at hand the overall maximum growth is obtained for βH = −0.05 and Λ = 45◦.

We observe a similar picture if we examine the optimal growth in the supercritical
domains of three accelerated boundary layers with different sweep angles as shown in
figure 16(a). Because the corresponding optimal disturbances eventually evolve into
crossflow modes it is interesting to compute the optimal initial amplification CA of the
crossflow modes as done in § 4.2.2. To do so, both the optimal initial disturbance and
the discrete eigenmode need to be introduced at the same position x0. The position
furthest upstream at which we could find a discrete eigenmode for all three boundary
layers is x0 = 0.16. Further, CA is presented in figure 16(c). It is noteworthy that
although maximum growth is obtained for the largest sweep angle and thus for the
boundary layer with the largest crossflow, maximum initial amplification of crossflow
modes is obtained for Λ = 25◦. On the basis of this result one might conclude
that non-modal growth becomes more relevant for boundary layers with small sweep
angles. This seems logical as exponential growth sets in earlier for larger sweep angles,
resulting in a smaller region of non-modal growth. Hence, the disturbance growth
at the point of neutral stability decreases for increasing sweep angles. The disparity
regarding initial amplification of crossflow modes obtained for the two different initial
positions in figures 13 and 16 for Λ = 45◦ is related to the results in § 4.2.5 and shows
that x0 has an influence on optimal initial amplification of discrete modes.

4.3. Global optimal disturbances

The term ‘global’ is used in the sense that we optimize the disturbance growth not only
with respect to the initial shape function but also regarding the spanwise wavenumber,
the frequency and the initial position at which disturbances are introduced. The
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Figure 16. (a) The N -factors of optimal growth at x1 = 1 for x0 = 0.16, ω = 0, βH = 0.1
and three different sweep angles, namely Λ = 45◦ (—), Λ = 35◦ (---), Λ = 25◦ (-·-). (b) The
N -factors of crossflow modes for the same parameters as in (a), calculated using the classical
PSE. (c) Optimal initial amplification of crossflow modes at x0 = 0.16.

respective function describing global optimal growth is thus defined as

Ḡ = max
x0,β,ω,q0

G(x0, x1, β, ω, q0). (4.8)

Obtaining Ḡ involves a more complex optimization procedure. In addition to
employing the adjoint-based optimization procedure described in § 3.3, which provides
the optimal initial disturbance shape, we now also need to determine x0, β, ω, yielding
the maximum possible disturbance growth at each x1. These we get by utilizing
Newton’s line search method in which each iteration step is given according to⎛

⎝x0

β

ω

⎞
⎠

k+1

=

⎛
⎝x0

β

ω

⎞
⎠

k

− γk∇2G̃, (4.9)

with

G̃ = max
q0

G(x0, x1, β, ω, q0). (4.10)

The largest step length γ which yields an increase in G̃ is provided via backtracking.
The Hessian matrix ∇2G̃ is computed using finite differences. We thus need to perform
10 evaluations of G̃ for each Newton step. Iterations are performed until the norm
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Figure 17. The thick lines represents N -factors and the corresponding optimal parameters for
global optimal growth. The thin lines in (a) represent N -factors from a solution to the classical
PSE. Also shown are the results for βH = 0.1 and sweep angles Λ = 45◦ (—), Λ = 35◦ (---),
Λ = 25◦ (-·-); � represents calculations with the unphysical optimality condition (see § 3.3).
The parameters (β, ω, x0) are non-dimensionalized with the local reference values δx1

and Qx1
.

The plots show (a) N -factors, (b) optimal spanwise wavenumber, (c) optimal frequency and
(d ) optimal initial position.

of the gradient is less than ||∇G̃k||2/G̃k < 10−3 which for all performed calculations
corresponded to a relative change ΔG̃ = |G̃k+1 − G̃k|/G̃k = O(10−6) or less.

We once more use the Blasius boundary layer to verify this approach. The maximum
growth Ḡ = 0.0034Rex1

is obtained for the optimal parameters β = 0.53, ω = 0 and
x0 = 0.375 and thus reproduces the results by Levin & Henningson (2003). In order to
obtain an envelope comprising non-modal growth we compute Ḡ for several positions
x1 along the chord of the plate. We consider the six FSC boundary layers which exhibit
different pressure gradients and sweep angles and were already examined in the latter
section § 4.2.6.

4.3.1. Accelerated boundary layers

Figure 17 depicts results of the global optimization approach for three accelerated
boundary layers with βH = 0.1 and sweep angles Λ = 45◦, Λ = 35◦ and Λ = 25◦.
Figure 17(a) compares global optimal growth with envelopes which are based on
modal growth solely. The latter are obtained from a classical parametric PSE study.
It clearly shows that the maximum growth which can be achieved by introducing
optimal initial disturbances with optimal parameters β , ω and x0 into the boundary
layers can be two to three orders of magnitude larger compared with what is
predicted on the basis of modal analysis. Substantial disturbance growth is obtained
at all stations. Even at subcritical conditions close to the leading edge N-factors
between two and three are possible. Such a large and rapid disturbance growth
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could lead to early nonlinear effects. It is noticeable that the optimal parameters β ,
ω and x0 scale with the local reference values δx1

=
√

νx1/Qx1
and Qx1

= Qe(x1)
once x1 is located well inside the supercritical region of the boundary layer as can
be seen in figure 17(b–d ). The superscript e denotes the boundary layer edge. The
corresponding dimensional optimal spanwise wavenumber and frequency decrease
with x1, whereas the dimensional optimal initial position increases. Figure 17(c)
reveals another difference with respect to two-dimensional boundary layers as the
optimal frequency is non-zero. For a Blasius boundary layer Luchini (2000) showed
that ω = 0 represents the optimal frequency.

All optimization results presented so far were computed using the optimality
conditions (3.27). However, we described in § 3.3 that these had to be modified,
as p∗(x0) was neglected to yield an optimal initial disturbance satisfying no-slip
conditions at the wall. To study the effect of this modification on optimal growth
we compute the global optimal growth for a limited number of positions x1 using
the unphysical optimality condition (3.26) and compare it with the results that we
obtained using the modified optimality condition. Figure 17 shows that the results
from both computations are identical. The reason is that p∗(x0) is found to be of
considerable size only close to the wall. Because the initial non-zero value at the
boundary is forced to zero immediately when integrating downstream, the effect of
p∗(x0) is insignificant. Our assumption that the modification does not influence the
optimization is therefore justified.

4.3.2. Decelerated boundary layers

Performing the global optimization for decelerated boundary layers using the above-
described method is not as straightforward as for their accelerated counterparts. The
reason is the occurrence of TS waves. In adverse pressure gradient boundary layers
these can become strongly amplified and dominate over crossflow modes. TS waves
will thus adopt the role of optimal disturbances at some distance from the leading
edge. Yet our method is not designed to describe the spatial evolution of TS waves.
The reason is our approach to determine lines of constant phase. Our assumption that
these closely follow the outer streamline and that uφ represents the dominating flow
quantity of the flow is no longer true for TS waves. Their lines of constant phase are
usually close to being perpendicular with respect to the outer streamline. Initiating the
iteration procedure with the external streamline as described in § 3.2 thus constitutes
the worst case regarding a TS wave and does not yield a converged solution. We will
therefore be able to compute global optimal disturbances in decelerated boundary
layers up to the point at which TS waves become the optimal disturbances.

On applying the global optimization method to an FSC boundary layer with
βH = −0.05 and Λ = 45◦, the situation illustrated in figure 18 is observed. The
Newton iterations converge until x1 = 0.375. For chordwise positions larger than
that the Newton method tends to considerably lower spanwise wavenumbers for
which the adjoint-based optimization does not converge. Figure 18 depicts a rather
qualitative comparison between optimal growth and modal growth of the most
amplified TS waves which were all initiated close to their neutral point. It is obvious
though that around x1 = 0.375 optimal growth and modal growth of TS waves
are of the same order of magnitude. The occurrence of TS waves becoming the
most amplified disturbance constitutes the most natural explanation. However, the
global optimization procedure works well for x1 < 0.375. This region is of great
interest because rapid and extensive initial disturbance growth can lead to early
nonlinear effects which in turn can lead to the formation of secondary instabilities
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Figure 18. The N-factors of global optimal growth (---) and TS waves (—) for a decelerated
FSC boundary layer with βH = −0.05 and Λ = 45◦.

0 0.2 0.4 0.6
2

–0.01

–0.02

–0.03

3

4

5

6

N

0 0.2 0.4 0.6
0.20

0.25

0.30

0.35

0.40

0.45

0 0.2 0.4 0.6
x1 x1

ω
 δ

x 1
/Q

x 1

0 0.2 0.4 0.6
100

200

300

x 0
/δ

x 1
β
 δ

x 1

(a) (b)

(c) (d)

Figure 19. The N -factors and corresponding optimal parameters for global optimal growth
for baseflows with βH = −0.05 and sweep angles Λ = 45◦ (—), Λ = 35◦ (---), Λ = 25◦ (-·-).
the thin lines in (a) represent the N -factors of global optimal growth for respective baseflows
with βH = 0.1. The parameters (β, ω, x0) are non-dimensionalized with the local reference
values δx1

and Qx1
. The plots are as follows (a) N -factors, (b) optimal spanwise wavenumber,

(c) optimal frequency and (d) optimal initial position.

and a breakdown to turbulence. The following optimization results for decelerated
boundary layers are therefore presented for those regions in which TS waves do not
dominate.

Figure 19 shows the global optimal growth together with the corresponding optimal
parameters which were obtained for three decelerated boundary layers with different
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sweep angles. Figure 19(a) compares the global optimal growth in the front part of the
flat plate with the maximum possible growth found in the accelerated boundary layers.
The comparison shows that the maximum non-modal growth in decelerated boundary
layers is larger and thus corresponds to the results found for stationary disturbances
presented in figure 15. Hence, decelerated boundary layers also have a potential for
strong and rapid disturbance growth already very close to the leading edge. As for the
accelerated boundary layer it is therefore important to take into account non-modal
growth when trying to predict the transition location. The optimal values for β , ω

and x0 presented in figure 19(b–d ) do not scale with the local reference values in
the range that could be considered here. The corresponding dimensional values of
the spanwise wavenumber decrease with x1 where those of the frequency and the
initial position increase. As was found for accelerated boundary layers, the optimal
frequency is non-zero for decelerated three-dimensional boundary layers.

5. Conclusions
Optimal growth has been studied in accelerated as well as decelerated FSC boundary

layers at different sweep angles. To be able to perform a numerically efficient
parametric study a parabolized set of equations was developed, allowing for the
description of both modal and non-modal linear growth of disturbances whose lines
of constant phase are closely aligned with the external streamline. For reasons related
to the need to capture all the disturbance growth in the shape function, strongly
growing disturbances may fall outside the scope of application though. The Lagrange
multiplier technique was employed to derive an optimality system, yielding optimal
initial disturbances. The governing equations and our approach to solve them have
been verified by comparing the predicted spatial evolution of crossflow modes with
the DNS results by Schrader et al. (2009) and the corresponding result of a classical
PSE method. In addition, results for optimal growth in a Blasius boundary layer were
reproduced correctly, verifying our optimization procedure.

Considering the results obtained for stationary disturbances it becomes clear
that no principle difference exists regarding optimal disturbances at subcritical and
supercritical conditions in three-dimensional boundary layers. Optimal disturbances
take the form of streamwise-oriented vortices which are tilted against the mean shear
of the crossflow initially and evolve into bent streaks further downstream, which are
almost aligned with the external streamline. When entering the supercritical domain
of the boundary layer, optimal disturbances smoothly evolve into the dominating
eigenmodes. The initially tilted vortical structures quickly rise into an upright position
while moving downstream. On the basis of these observations we have argued that
the physical mechanism driving non-modal growth in three-dimensional boundary
layers consists of a combination of the lift-up effect and the Orr mechanism.

The fact that optimal disturbances at both subcritical and supercritical conditions
share the same characteristics is in contrast with two-dimensional boundary layers
where streaks and TS waves bear no resemblance and confirms the findings by
Corbett & Bottaro (2001). It is therefore concluded that non-modal growth initiates
modal instabilities in form of crossflow modes in three-dimensional boundary layers.
Computing the optimal initial amplification of different modes showed that these are
not equally susceptive to non-modal growth. This important effect is not taken care
of by classical transition prediction methods such as the eN method, which solely
consider modal growth.
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The position at which disturbances should be introduced to optimally excite
stationary crossflow modes in an accelerated boundary layer was found to be located
around the region of neutral stability. Such a relation is not as clear in the decelerated
boundary layer considered, where the optimal initial position is located upstream of
the neutral point.

It was found that maximum non-modal growth at subcritical conditions is larger for
adverse pressure gradients, complying again with the results by Corbett & Bottaro
(2001), and that it increases for increasing sweep angles. However, computing the
optimal initial energy of modal instabilities for boundary layers of different sweep
angles revealed that non-modal growth becomes more relevant for smaller sweep
angles. Hence, the smaller the sweep angle, the larger the initial amplification of
modal instabilities.

Finally, we computed global optimal growth for non-stationary disturbances. The
term global refers to optimization with respect to the spanwise wavenumber, frequency
and initial position in addition to optimization with respect to the initial disturbance
shape. This was achieved by combining adjoint-based optimization, yielding the
optimal shape function with a Newton line search algorithm providing the three above-
mentioned optimal parameters β , ω and x0. Global optimal growth was computed
for several positions on the plate where both accelerated and decelerated boundary
layers with several sweep angles were considered. In general disturbance growth was
found at all positions on the flat plate where the global optimal disturbances are non-
stationary as opposed to the case of two-dimensional boundary layers. The considered
accelerated boundary layers exhibited disturbance growth O(102)–O(103) already at
subcritical conditions. At supercritical conditions the computed global optimal growth
exceeded the maximum predicted modal growth by two to three orders of magnitude.

In decelerated boundary layers global optimal growth could only be computed up
to the position at which TS waves become dominant because the herein-developed
method cannot predict the evolution of TS waves. However it was shown that up
to that position disturbance growth O(10)–O(104) is possible if non-modal growth is
considered.

These results show that non-modal growth is of considerable size in three-
dimensional boundary layers and could therefore lead to early nonlinear effects.
As both free-stream turbulence and wall roughness are likely to cause disturbances
similar in shape to the here-obtained optimal disturbances non-modal growth may
be related to a receptivity mechanism for modal instabilities and should therefore
not be disregarded when determining the location at which transition from laminar
to turbulent flow occurs. Future work will therefore determine how optimal growth
can be associated with receptivity coefficients, describing the initial amplification of
crossflow modes because of e.g. free-stream turbulence.

The authors would like to thank Luca Brandt, Lars-Uve Schrader, Antonios
Monokrousos and Yohann Duguet for fruitful discussions. This work is supported
by the European Commission through the FP6 project ‘TELFONA’ (contract no.
AST4-CT-2005-516109).

Appendix A. Operators of the direct equations
In § 3.1 the set of parabolic equations (3.6) is expressed in operator form as

Lq = 0 (A 1)
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with L being a linear operator of the form

L = A + B
∂

∂z
+ C

∂2

∂z2
+ D

∂

∂x
(A 2)

and q = (u, v, w, p)T representing the state vector. The individual linear operators A,
B, C and D take the form

A =

⎛
⎜⎝

iα iβ 0 0
C + Ux 0 Uz iα

Vx C Vz iβ
0 0 C + Wz 0

⎞
⎟⎠ , (A 3)

B =

⎛
⎜⎝

0 0 1 0
W 0 0 0
0 W 0 0
0 0 W 1

⎞
⎟⎠ , (A 4)

C =

⎛
⎜⎜⎝

0 0 0 0
− 1

Re
0 0 0

0 − 1
Re

0 0
0 0 − 1

Re
0

⎞
⎟⎟⎠ , (A 5)

D =

⎛
⎜⎝

1 0 0 0
U 0 0 0
0 U 0 0
0 0 U 0

⎞
⎟⎠ , (A 6)

where

C = −iω + iαU + iβV +
1

Re

(
α2 + β2

)
. (A 7)

Appendix B. Derivation of the adjoint operators
In § 3.3.1 the adjoint of the direct operator L is defined in terms of the inner

product (3.14) as

〈q∗, Lq〉 = 〈L∗q∗, q〉 + boundary terms, (B 1)

where ∗ denotes adjoint quantities and L∗ represents the compact form of

L∗ = A∗ + B∗ ∂

∂z
+ C∗ ∂2

∂z2
+ D∗ ∂

∂x
. (B 2)

In order to obtain the specific forms of the adjoint operators A∗, B∗, C∗ and D∗ we
need to perform integration by parts on the leftmost inner product in (B 1), yielding∫ ∫

Ω

(q∗)H
(

Aq + B
∂q
∂z

+ C
∂2q
∂z2

+ D
∂q
∂x

)
dx dz

=

∫ ∫
Ω

(
A∗q∗ + B∗ ∂q∗

∂z
+ C∗ ∂2q∗

∂z2
+ D∗ ∂q∗

∂x

)H

q dx dz

+

∫ x1

x0

[
(q∗)H

(
Bq + C

∂q
∂z

− ∂C

∂z
q
)

−
(

∂q∗

∂z

)H

Cq

]z=∞

z=0

dx

+

∫ ∞

0

[
(q∗)HDq

]x1

x0
dz (B 3)
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with

A∗ = AH − ∂BH

∂z
+

∂2CH

∂z2
− ∂DH

∂x
, (B 4)

B∗ = −BH + 2
∂CH

∂z
, (B 5)

C∗ = CH , (B 6)

D∗ = −DH . (B 7)

The boundary terms at z = 0 and z = ∞ in (B 3) become zero if the boundary
conditions for the adjoint variables u∗, v∗ and w∗ are chosen as specified in § 3.3.2.
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